75% OFF - SHORT TIME ONLY

EN

Data Protection, Insurance and AI

by Martin Daller

Data Protection Measures for the Use of AI in the European Insurance Industry

The use of Artificial Intelligence (AI) in the European insurance sector offers significant potential — from increasing efficiency and enabling personalization to improving fraud detection. At the same time, handling personal data remains a highly sensitive issue. Insurers operate within a clearly defined legal framework: the General Data Protection Regulation (GDPR). This regulation requires that personal data be processed purposefully, securely, and transparently. Accordingly, insurers rely on a range of technical and organizational measures to ensure the compliant use of AI.

1. On-Premises AI Infrastructure

Some insurers deliberately refrain from using external cloud services and run their AI systems entirely on in-house servers. These on-premises solutions ensure that sensitive customer data never leaves the company’s network.

Example: Allianz Germany analyzes customer inquiries using an internal NLP (Natural Language Processing) model that operates exclusively within the company’s own data centers in Germany. This ensures full control over data processing.

Advantage: Maximum data sovereignty and reduced exposure to external attack surfaces.

2. Private Cloud and European Providers

Where cloud solutions are necessary, many insurers opt for European providers such as T-Systems, OVHcloud, or initiatives like GAIA-X. These offer GDPR-compliant cloud infrastructures that meet the strict requirements for data security, availability, and processing within the European Economic Area (EEA).

Advantage: Scalability of modern cloud technologies combined with regulatory certainty.

3. Federated Learning

Federated Learning represents a particularly innovative approach. AI models are trained in a decentralized manner across various data sources — for example, in different national subsidiaries of an insurance group. The data itself remains locally stored, and only updated model parameters are centrally aggregated.

Example: A fraud detection AI is trained in Italy, France, and Germany without transferring raw data across borders. Only the adjusted model weights are shared with the headquarters.

Advantage: GDPR-compliant learning from decentralized data sources while enabling knowledge exchange across locations.

4. Differential Privacy and Anonymization

To further protect personal data, many insurers implement anonymization and pseudonymization techniques. Data is modified in such a way that individuals cannot be reidentified. Methods such as Differential Privacy deliberately introduce statistical noise into datasets to prevent reidentification.

Use case: Especially relevant in the development of new pricing models or insurance products, where large volumes of data must be analyzed.

5. Synthetic Data

An increasingly popular approach involves training AI models on synthetic data — artificially generated datasets that statistically resemble real customer data but do not pertain to actual individuals.

Advantage: Enables risk-free development and validation of AI systems without infringing on data privacy.

6. Governance by Data Protection and Ethics Teams

Technical safeguards alone are not sufficient. Many insurers establish comprehensive data governance structures to define:

  • Who has access to what data (access control),
  • How AI models are documented, validated, and monitored,
  • How data protection and fairness are continuously reviewed.

Example: Companies such as AXA, Generali, and Allianz maintain internal data ethics teams to assess every AI application for GDPR compliance and ethical risks.


Conclusion: Data Protection as an Enabler of Trustworthy AI

Data protection is not a barrier to innovation — it is a key success factor for the trustworthy deployment of AI in insurance. European insurers are demonstrating that state-of-the-art AI technologies can be reconciled with the highest data protection standards — whether through on-premises solutions, GDPR-compliant cloud infrastructures, Federated Learning, or synthetic data. The crucial element is a holistic approach that combines technology, organizational structures, and governance. Only in this way can AI be deployed sustainably, securely, and in line with European values.

« Back
Expert for Bancassurance

My company develops smart bancassurance models for banks – individual, digital, customer-focused. Our claim: more income, stronger customer loyalty and a consulting experience that inspires. Practical, regulatoryly secure and always with an eye on what helps your bank to move forward.

Contact

Martin Daller Consulting e.U.
Am grünen Prater 10/21
1020 Vienna • Austria

Our location on Google Maps

e-mail: info@dallerconsulting.eu
mobile: +43 664 425 19 08

© 2025 Martin Daller Consulting e.U.
Settings saved
Datenschutzeinstellungen

Unsere Website verwendet WEDER Google Analytics NOCH sonstige Tracking-Tools, mit denen das Benutzerverhalten im Internet nachvollzogen werden kann.

Aus Sicherheitsgründen wird Ihre IP-Adresse an die Sitzung gebunden. Die IP-Adresse wird von uns 30 Tage gespeichert. CONTAO setzt auch Session Cookies, die nach Verlassen der Website automatisch gelöscht werden.

user_privacy_settings

Domainname: ecpat.site / ecpat.at
Ablauf: 30 Tage
Speicherort: Localstorage
Beschreibung: Speichert die Privacy Level Einstellungen aus dem Cookie Consent Tool "Privacy Manager".

user_privacy_settings_expires

Domainname: ecpat.site / ecpat.at
Ablauf: 30 Tage
Speicherort: Localstorage
Beschreibung: Speichert die Speicherdauer der Privacy Level Einstellungen aus dem Cookie Consent Tool "Privacy Manager".

ce_popup_isClosed

Domainname: ecpat.site / ecpat.at
Ablauf: 30 Tage
Speicherort: Localstorage
Beschreibung: Speichert, dass das Popup (Inhaltselement - Popup) durch einen Klick des Benutzers geschlossen wurde.

onepage_animate

Domainname: ecpat.site / ecpat.at
Ablauf: 30 Tage
Speicherort: Localstorage
Beschreibung: Speichert, dass der Scrollscript für die Onepage Navigation gestartet wurde.

onepage_position

Domainname: ecpat.site / ecpat.at
Ablauf: 30 Tage
Speicherort: Localstorage
Beschreibung: Speichert die Offset-Position für die Onepage Navigation.

onepage_active

Domainname: ecpat.site / ecpat.at
Ablauf: 30 Tage
Speicherort: Localstorage
Beschreibung: Speichert, dass die aktuelle Seite eine "Onepage" Seite ist.

view_isGrid

Domainname: ecpat.site / ecpat.at
Ablauf: 30 Tage
Speicherort: Localstorage
Beschreibung: Speichert die gewählte Listen/Grid Ansicht in der Demo CarDealer / CustomCatalog List.

portfolio_MODULE_ID

Domainname: ecpat.site / ecpat.at
Ablauf: 30 Tage
Speicherort: Localstorage
Beschreibung: Speichert den gewählten Filter des Portfoliofilters.

Eclipse.outdated-browser: "confirmed"

Domainname: ecpat.site / ecpat.at
Ablauf: 30 Tage
Speicherort: Localstorage
Beschreibung: Speichert den Zustand der Hinweisleiste "Outdated Browser".
Zum Hauptmenü Zum Inhalt Accessibility Tools öffnen
Shift+Alt+A ESC to Close
Bedienungshilfen
Shortcuts
Shift + Alt + M
Shift + Alt + I
Shift + Alt + E
Shift + Alt + D
Shift + Alt + O
You are using an outdated browser. The website may not be displayed correctly.